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Abstract. An image registration technique is presented for the registration
of medical images using a hybrid combination of coarse-scale landmark and
B-splines deformable registration techniques. The technique is particularly ef-
fective for registration problems in which the images to be registered contain
large localized deformations. A brief overview of landmark and deformable reg-
istration techniques is presented. The hierarchical multiscale image decompo-
sition of E. Tadmor, S. Nezzar, and L. Vese, A multiscale image representation
using hierarchical (BV, L2) decompositions, Multiscale Modeling and Simula-
tions, vol. 2, no. 4, pp. 554–579, 2004, is reviewed, and an image registration
algorithm is developed based on combining the multiscale decomposition with
landmark and deformable techniques. Successful registration of medical im-
ages is achieved by first obtaining a hierarchical multiscale decomposition of
the images and then using landmark-based registration to register the resulting
coarse scales. Corresponding bony structure landmarks are easily identified in
the coarse scales, which contain only the large shapes and main features of the
image. This registration is then fine tuned by using the resulting transforma-
tion as the starting point to deformably register the original images with each
other using an iterated multiscale B-splines deformable registration technique.
The accuracy and efficiency of the hybrid technique is demonstrated with sev-
eral image registration case studies in two and three dimensions. Additionally,
the hybrid technique is shown to be very robust with respect to the location
of landmarks and presence of noise.

1. Introduction. Image registration is the process of determining the optimal spa-
tial transformation that brings two images into alignment with each other. Image
registration is necessary, for example, when images of the same object are taken at
different times, from different imaging devices, or from different perspectives. The
two images to be registered, called the fixed and moving images, are the input to
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the registration algorithm; the output is the optimal transformation that maps the
moving image to the fixed image. Ideally, the transformed moving image should be
identical to the fixed image after registration. Applications of image registration
include image-guided radiation therapy (IGRT), image-guided surgery, functional
MRI analysis, and tumor detection, as well as many non-medical applications, such
as computer vision, pattern recognition, and remotely sensed data processing (see
[5] and the references therein).

Image registration models are classified into two main categories according to the
transformation type: rigid and deformable. Rigid image registration models assume
that the transformation that maps the moving image to the fixed image consists only
of translations and rotations, while deformable models allow localized stretching
of images. Rigid models are sufficient in certain circumstances. However, many
registration problems, particularly in medical applications, are non-rigid since most
of the organs in the human body are not confined to rigid motion. For example,
respiratory motion causes non-rigid, or deformable, distortion of the lungs and
other organs. As another example, image-guided neurosurgery procedures require
deformable registration of pre- and intra-operative images of the brain [18], [26].
For additional applications of deformable registration, see [11], [22], [23], [24], and
the references therein. Most current research in image registration is focused on the
problem of deformable registration, and that is our focus in this paper.

We present a novel algorithm for the deformable registration of medical images
that combines landmark and deformable registration models using a hierarchical
multiscale decomposition of the images to be registered. Landmark-based registra-
tion techniques use the correspondence of a set of features, or landmarks, in the
images to determine the transformation that maps the moving image to the fixed
image. Although landmark-based techniques are computationally easy to imple-
ment, the identification of corresponding features in the images to be registered is a
difficult and time-consuming task, and the accuracy of such techniques is dependent
on precise correspondence between landmarks [20]. Our hybrid technique, however,
uses a combination of coarse-scale landmark-based and deformable registration tech-
niques, and is not dependent upon exact correspondence of landmarks. The hybrid
technique is shown to be particularly robust to perturbations in the location of
landmarks, and thus is a significant improvement over ordinary landmark-based
registration techniques. The development of our technique is motivated by the idea
that correspondence between certain structures in images, such as bony structures,
can be easily identified visually, while the correspondence between other regions,
such as soft tissue, is less easy to see. Bony structures undergo rigid transfor-
mations; soft tissue and muscular structures undergo deformable transformations.
Thus, mapping of the two regions should be approached using different techniques.

This paper is an extension of [15] and [16], in which we presented a multiscale
approach to the problems of rigid and deformable registration of images that con-
tain large levels of noise. This paper is organized in sections. In Section 2, we
provide a brief overview of the image registration problem and discuss landmark
and deformable registration techniques. In Section 3, we review the hierarchical
multiscale image decomposition of [25], and in Section 4 we develop a hybrid im-
age registration algorithm based on combining the decomposition with landmark
and deformable registration techniques. The accuracy and efficiency of our hybrid
technique is demonstrated in Section 5 with several image registration case studies
in both two and three dimensions. In Section 6, we demonstrate the robustness of
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our algorithm with respect to the location of landmarks, number of landmarks, and
presence of noise. Concluding remarks are given in Section 7.

2. The registration problem. Image registration is the problem of determining
the optimal spatial transformation between two given images. The images to be
registered are typically (though not necessarily) images of the same object acquired
at different times, from different perspectives, or from different modalities. Image
registration has many important applications in medicine (e.g., diagnosis, analysis,
and treatment planning/evaluation), astrophysics (e.g., alignment of images from
different frequencies), military applications (e.g., target recognition), computer vi-
sion, remote sensing, and many others. See [8], [13] for an overview of applications
of image registration. In this paper, we are primarily concerned with registration
of medical images.

2.1. The mathematical setting. An n-dimensional gray-scale image f is a map-
ping which assigns to every point x ∈ Ω ⊂ Rn a gray value f(x), called the intensity
value of the image f at the point x. Given two images A(x) and B(x), referred to as
the fixed and moving images, the goal of the registration problem is to find a spatial
transformation φ such that the fixed image A(x) and the transformed moving image
B(φ(x)) are similar in some appropriate mathematical way.

A registration algorithm has three components: the transformation model which
specifies the way in which the moving image can be transformed to correspond to the
fixed image, the similarity metric used to compare the images, and the optimization
process that varies the parameters of the transformation model in such a way that
the resulting transformation is optimal. Given a distance metric D on L2(R2)
(for two-dimensional images), and a specified space of transformation models, the
general registration problem can be stated as follows:

φ = argmin D(A,B(ψ)),
where ψ is in the specified space of transformation models. Common metrics used in
image registration are mean squares, normalized correlation, and mutual informa-
tion (for registration of multi-modality images). The space of transformation models
used in a particular registration problem depends on the physical and anatomical
characteristics of the images to be registered. For example, rigid and affine transfor-
mations are used when the moving image is assumed to differ from the fixed image
by translation, rotation, dilation, and shear. Polynomial and splines translations
are used when the transformation between the images is assumed to consist of local-
ized stretching and non-rigid deformation. See [5], [13] for an overview of the image
registration problem. In this paper, we will use a combination of landmark-based
and deformable registration techniques.

2.2. Landmark-based registration. Landmark-based registration algorithms use
the (manual or automatic) identification of corresponding anatomical structures (or
other features) in the images to be registered. For an overview of landmark-based
registration, see [20]. Given two images A and B to be registered with one another,
let Fk(A) and Fk(B), k = 1, 2, . . . m denote m corresponding features of the im-
ages. The solution φ of the registration problem is then a map φ : R2 → R2 (in the
two-dimensional case) such that

Fk(A) = φ(Fk(B)), k = 1, . . . m. (1)
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More generally, if || · || is a norm on the features space, the landmark-based regis-
tration problem can be stated as the following minimization problem:

φ = argmin
ψ:R2→R2

DLM (ψ), (2)

where DLM (ψ) :=
m∑

k=1

||Fk(A) − ψ(Fk(B)||2. To solve the minimization given by

Eq. (2), the transformations ψ are typically chosen to be an element of some finite-
dimensional space, such as polynomials, splines, or wavelets, and the minimization
can be easily solved by expanding DLM (φ) in terms of basis functions of the space
and solving the resulting least-squares problem.

Landmark-based registration techniques are computationally simple and efficient,
but the main drawback of such techniques is that they rely on precise correspondence
of features in the images to be registered. Although there has been recent research
on automatic identification of landmarks (see [2], [7], [24]), in practice landmarks
are typically identified manually. Precise identification of corresponding landmarks
is time consuming and tedious, even for a medical expert [20]. In addition, there are
numerous known examples of cases in which the result of the landmark registration
process is a transformation which correctly matches the user-supplied landmarks
but is not physically meaningful. See [14, p. 44] for a simple example of such a
case.

2.3. Deformable registration. There are many existing approaches to deformable
registration: [1], [4], [12], [19], [23]. Splines-based transformation models are among
the most common and important transformation models used in non-rigid registra-
tion problems [6]. Splines-based registration algorithms use control points in the
fixed and moving images and a splines function to define transformations away from
these points. The two main spline models used in image registration problems are
thin-plate splines and B-splines. Thin-plate splines have the property that each
control point has a global influence on the transformation. That is, if the position
of one control point is perturbed, then all other points in the image are perturbed
as well. This can be a disadvantage because it limits the ability of the transfor-
mation model to model localized deformations. In addition, the computation time
required for a thin-plate spline-based registration algorithm increases significantly
as the number of control points increases. See [3] for an overview of thin-plate
splines.

In contrast, B-splines are defined locally in the neighborhood of each control
point. Thus perturbing the position of one control point affects the transforma-
tion only in a neighborhood of that point. As a result, B-spline-based registration
techniques are more computationally efficient than thin-plate splines, especially for
a large number of control points. See [9] and [10] for a detailed description of B-
splines transformation models. The displacement of a node αi,j is specified by a
vector xi,j , and the displacement vectors of a collection of nodes characterize the
tissue deformation. The displacement at a particular location on the image is de-
duced by fitting a polynomial, expressed using the basis splines (B-splines), to the
grid nodes. The number of control points used determines the number of degrees
of freedom of the transformation model, and hence, the computational complexity
of the B-splines algorithm.

To define the splines-based deformation model in two dimensions, we let Ω =
{(x, y) | 0 ≤ x ≤ X, 0 ≤ y ≤ Y } denote the domain of the image. Let α denote
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a nx × ny mesh of control points αi,j with uniform spacing δ. Then the B-splines
deformation model can be written as the 2-D tensor product of 1-D cubic B-splines:

φ(x, y) =
2∑

l=0

2∑
m=0

Bl(x)Bm(y)αi+l,j+m, (3)

where i = bx/nxc − 1 , j = by/nyc − 1, and Bl represents the l-th basis of the
B-splines:

B0(u) =
1
6
(1− u)3 ,

B1(u) =
1
6
(3u3 − 6u2 + 4) ,

B2(u) =
1
6
(−3u3 + 3u2 + 3u + 1) .

Changing the control point αi,j affects the transformation only in a local neighbor-
hood of αi,j . The control points α act as parameters of the B-splines deformation
model, and the degree of non-rigid deformation which can be modeled depends on
the resolution of the mesh of control points α. A large spacing of control points
allows modeling of global non-rigid deformation, while a small spacing of control
points allows modeling of local non-rigid deformations. Additionally, the number of
control points determines the number of degrees of freedom of the transformation
model, and hence, the computational complexity.

The splines deformation model is illustrated schematically in Figure 1. The
deformation is computed explicitly at control points by computing the vector dis-
placement between the fixed and moving images, and the splines function is used
to interpolate the deformation away from the control points. The implementation
of the B-splines deformation registration algorithm works in the following way: at
each iteration, the distance D between the fixed and moving images is computed;
the parameters of the B-splines deformation are computed based on the direction
of steepest gradient descent of the metric D, and the resulting transformation φ is
applied to the moving image; the distance between the fixed and deformed moving
images D(A,B(φ)) is then recomputed, and this process continues until the distance
D between the images is optimized.

3. The multiscale decomposition. The multiscale registration techniques to be
discussed in this paper are based on the multiscale image representation using the
hierarchical (BV,L2) decompositions of [25]. This multiscale decomposition will
provide a hierarchical expansion of an image that separates the essential features
of the image (such as large shapes and edges) from the fine scales of the image
(such as details and noise). The decomposition is hierarchical in the sense that
it will produce a series of expansions of the image that resolve increasingly finer
scales, and hence include increasing levels of detail. The mathematical spaces L2,
the space of square-integrable functions, and BV , the space of functions of bounded
variation, will be used in the decomposition:

L2 =
{
f

∣∣ ||f ||L2 :=
∫

f2 < ∞}
.
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Figure 1. Schematic visualization of the splines deformation model.

BV =
{
f

∣∣ ||f ||BV :=

sup
h6=0

|h|−1||f(·+ h)− f(·)||L1 < ∞}
.

Generally, images can be thought of as being elements of the space L2(R2), while
the main features of an image (such as edges) are in the subspace BV (R2). The
multiscale image decomposition of [25] interpolates between these spaces, providing
a decomposition in which the coarsest scales are elements of BV and the finest scales
are elements of L2. More precisely, the decomposition is given by the following.
Define the J-functional J(f, λ) as follows:

J(f, λ) := inf
u+v=f

λ||v||2L2 + ||u||BV , (4)

where λ > 0 is a scaling parameter that separates the L2 and BV terms. This
functional J(f, λ) was introduced in the context of image processing by Rudin,
Osher, and Fatemi [21]. Let [uλ, vλ] denote the minimizer of J(f, λ). The BV
component, uλ, captures the coarse features of the image f , while the L2 component,
vλ, captures the finer features of f such as noise. This model is effective in denoising
images while preserving edges, though it requires prior knowledge on the noise
scaling λ.

Tadmor, et al. proposed in [25] an alternative point of view in which the mini-
mization of J(f, λ) is interpreted as a decomposition f = uλ +vλ, where uλ extracts
the edges of f and vλ extracts the textures of f . This interpretation depends on the
scale λ, since texture at scale λ consists of edges when viewed under a refined scale.
We refer to vλ = f − uλ as the residual of the decomposition. Upon decomposing
f = uλ + vλ, we proceed to decompose vλ as follows:

vλ = u2λ + v2λ,

where
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[u2λ, v2λ] = arginf
u+v=vλ

J(vλ, 2λ).

Thus we obtain a two-scale representation of f given by f ∼= uλ + u2λ, where now
v2λ = f − (uλ + u2λ) is the residual. Repeating this process results in the following
hierarchical multiscale decomposition of f . Starting with an initial scale λ = λ0,
we obtain an initial decomposition of the image f :

f = u0 + v0, [u0, v0] = arginf
u+v=f

J(f, λ0).

We then refine this decomposition to obtain

vj = uj+1 + vj+1, [uj+1, vj+1] = arginf
u+v=vj

J(vj , λ02j+1), j = 0, 1, . . .

After k steps of this process, we have:

f = u0 + v0 = u0 +u1 + v1 = u0 +u1 +u2 + v2 = . . . = u0 +u1 + . . .+uk + vk, (5)

which is a multiscale image decomposition f ∼ u0 +u1 + . . .+uk, with a residual vk.
As k increases, the uk components resolve edges with increasing scales λk = λ02k.

4. Hybrid Landmark and deformable registration using the multiscale
decomposition. In our previous work [15], [16], we used the multiscale decom-
position of [25] reviewed in Section 3 to develop multiscale rigid and deformable
registration algorithms for registration of images that contain high levels of noise.
We demonstrated that our multiscale registration techniques enable successful reg-
istration of images that contain noise levels significantly greater than the levels at
which ordinary rigid and deformable registration techniques fail. In this paper,
we extend our previous work on multiscale registration to a new registration tech-
nique based on combining landmark and deformable registration methods with the
multiscale decomposition. We shall refer to this technique as a hybrid multiscale
landmark and deformable registration algorithm. The main idea behind our new
technique is that by incorporating landmark registration, we can use known infor-
mation about correspondence of bony structures or other anatomical structures to
improve the accuracy and efficiency of the registration procedure.

For the general setup, consider two images A (the fixed image) and B (the moving
image). We first apply the multiscale hierarchical decomposition to both images.
Let m denote the number of hierarchical steps used for the multiscale decompo-
sitions. For the applications presented in this paper, we use m = 8 hierarchical
scales. Upon decomposing both of the images to be registered we use the coarse
scales of each image to identify several corresponding anatomical landmarks in each
image. Since the coarse scales contain only the main shapes and general features
of each image, the identification of landmarks in the coarse scales is a relatively
easy task and can potentially be implemented automatically (for example, using
the methods of [24]). The determination of which coarse scale to use (e.g., the
first or second coarse scale) is image dependent; upon decomposing each image, we
choose the coarse scale that contains enough general shapes to identify correspond-
ing landmarks but contains few details and noise. For the medical image registration
applications presented in this paper it is sufficient to use the first coarse scale of
each image.
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To identify landmarks we must choose anatomical features of the two images that
we know must correspond to one another. For example, bony structures (such as the
spine or ribs in images of the torso) in one image must correspond to bony structures
in another image. We then use the identified landmarks to perform a landmark-
based registration of the coarse scales of each image. The output of the landmark
registration algorithm is the transformation φlandmark that optimally brings the first
coarse scales C1(A) and C1(B) into spatial alignment with one another, and is thus
a reasonable approximation for the optimal transformation between the original
images A and B. Therefore, we use φlandmark as the starting point to deformably
register the next coarse scales C2(A) and C2(B) with one another. We then use
the resulting transformation φ2 as the starting point to register the next scales
C3(A) and C3(B), and iterate this procedure until the final scales are reached. To
summarize, the implementation of the hybrid multiscale landmark and deformable
registration algorithm is as follows:

1. Decompose the fixed and moving images to be registered using the hierarchical
multiscale image decomposition of [25] reviewed in Section 3.

.

.
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(Fixed Image)
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2. Register the coarse scales C1(A) and C1(B) with each other using a standard
landmark-based registration algorithm. This step allows the practitioner to
incorporate known anatomical information about the images to be registered
(such as correspondence of bony structures) into the registration process. Let
φlandmark denote the resulting transformation.
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3
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3. Use φlandmark as the starting point to deformably register the next scales C2(A)
and C2(B) with each other. Let φ2 denote the resulting transformation.

4. Use φ2 as a starting point to deformably register C3(A) and C3(B) with each
other. Let φ3 denote the transformation obtained upon registering C3(A)
with C3(B). Iterate this method, at each stage using the transformation
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computed by the previous scale registration algorithm as the starting point
for the current registration.

Cm(B)

φlandmark

Deformable
Registration

φ1

C1(A) C1(B)

Deformable

RegistrationC2(A)

φ1

φ2

C2(B)
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Registration

φm

φm−1

Cm(A)

5. Results and discussion. In this section, we demonstrate the accuracy, effi-
ciency, and robustness of the image registration algorithm presented in Section 4
with image registration experiments using both clinical and synthetic deformations.
The images used in this section were acquired with a GE Discover-ST Scanner (GE
Medical Systems, Miluakee, WI) at the Stanford University Medical Center. We
obtained eight sets (phase bins) of images, each consisting of 80 two-dimensional
computed tomography (CT) images (slices) of the lungs. Each phase corresponds
to a different breathing phase of the respiratory cycle. Each 2D image slice con-
tains 512 × 512 voxels, and the slice thickness for each phase is 2.5-mm, and the
eight breathing phases recorded contain approximately 400 MB of data in DICOM
image format. Figure 2 illustrates the CT image slices corresponding to the first
and eighth breathing phases of the respiratory cycle.

5.1. 2D registration of respiratory phases. In this section, we demonstrate the
results obtained upon registering two corresponding sample slices (slice 16) from the
first and eighth phases of the CT data set using both ordinary deformable registra-
tion and the multiscale hybrid registration algorithm. The slices are illustrated in
Figure 3. For ease of notation, we let P1S16 denote the fixed image (on the left)
and P8S16 denote the moving image (on the right). To implement the multiscale
hybrid algorithm, we first decompose each of the images into m = 8 hierarchical
scales, and identify four corresponding pairs of landmarks in the first coarse scales
of each image, as shown in Figure 4.

Figure 5 illustrates the difference between slices before and after registration that
we performed using the multiscale hybrid registration technique. For comparison,
we also illustrate the difference between the slices after ordinary deformable regis-
tration. The visual results presented in Figure 5 clearly demonstrate the accuracy
of the multiscale hybrid registration technique. The hybrid algorithm successfully
recovers the deformation between the two images, and is more accurate than ordi-
nary deformable registration. Moreover, the hybrid algorithm is computationally
more efficient than ordinary deformable registration techniques. Working on a Dell
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Respiratory Phase 1

Respiratory Phase 8

Figure 2. The CT image slices (80 per phase) corresponding to
the first and eighth breathing phases of the respiratory cycle.

Dimension 8400 Intel Pentium 4 CPU (3.40 GHz, 2.00 GB of RAM), ordinary de-
formable registration of the images shown in Figure 3 requires approximately 115
seconds. The total time required for the hybrid registration algorithm (including
the multiscale decomposition of both images, landmark registration of the coarse
scales, and the final deformable registration) is approximately 72 seconds.

To further quantitatively evaluate the accuracy of the hybrid registration tech-
nique, we use the multiscale hybrid algorithm to register all 80 slices of the first
breathing phase with the corresponding slices of the eighth breathing phase, and for
each registration we compute the correlation coefficient ρ between the slices before
and after registration. The correlation coefficient ρ(A,B) between two images A
and B is given by:
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Figure 3. Two corresponding sample slices from two breathing
phases of the same patient. The image on the left (denoted P1S16)
is from the first breathing phase, and the image on the right (de-
noted P8S16) is the corresponding slice from the eighth breathing
phase.

Figure 4. The coarse-scale landmarks used to implement the
landmark-based registration portion of the hybrid algorithm.

ρ(A, B) =

∑
m

∑
n

(Amn − Ā)(Bmn − B̄)
√∑

m

∑
n

(Amn − Ā)2(Bmn − B̄)2
,

where A and B are m×n two-dimensional images and Ā and B̄ represent the mean
value of the elements of A and B, respectively. A correlation coefficient of zero
indicates a low degree of matching between the images, and a correlation coeffi-
cient of 1 indicates exact similarity between the images. Correlation coefficients are
commonly used representations of similarity between images for the evaluation of
deformable registration techniques [17]. In Figure 6, we plot the correlation coef-
ficients between the slices before registration, after hybrid multiscale registration,
after multiscale deformable registration (iteratively registering the scales of the im-
ages with each other without using the initial landmark-based registration) [16],
after ordinary deformable registration, and after landmark registration.

The correlation coefficients plot in Figure 6 quantitatively confirms the accuracy
of the multiscale hybrid registration technique. For all 80 CT lung slices consid-
ered, the hybrid technique significantly improves the correlation coefficient between
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Difference
Before

Registration

Difference After
Ordinary Deformable

Registration

Difference After
Hybrid Multiscale

Registration

Figure 5. The difference between the CT respiratory phase slices
P1S16 and P8S16 before registration, after ordinary deformable
registration, and after hybrid multiscale registration.

corresponding images, indicating that the algorithm successfully recovers the defor-
mation between the breathing phases. Moreover, the hybrid multiscale technique
is more accurate (based on comparison of correlation coefficients) than all other
registration methods considered here.

5.2. Large deformation registration. In this section, we demonstrate the ac-
curacy of the hybrid technique for registration images that contain large localized
deformations. We apply a large splines deformation to the fixed image P1S16 (slice
16, first breathing phase). The corresponding deformation field and the fixed and
deformed images are illustrated in Figure 7.

As in Section 5.1, we first decompose the images to be registered into m = 8
hierarchical scales. Using the first coarse scale of each image, we identify four corre-
sponding pairs of bony structure landmarks, and use landmark-based registration to
register the coarse scales of the images with one another. We then apply the result-
ing transformation to the original deformed image, and use a B-splines deformable
registration algorithm to complete the registration process. Figure 8 compares the
difference between the images before registration, after ordinary deformable regis-
tration (for comparison), and after hybrid multiscale registration.

The results presented in Figure 8 demonstrate that the hybrid registration tech-
nique successfully registers images that contain large localized deformations. For
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Figure 6. The correlation coefficients between all 80 image slices
of the first and eighth breathing phase before registration, after
hybrid multiscale registration, after multiscale deformable regis-
tration, after ordinary deformable registration, and after landmark
registration.

Figure 7. The deformation field (left) corresponding to the de-
formation transformation between the fixed (center) and deformed
(right) images to be registered with one another.
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Difference
Before

Registration

Difference After
Ordinary Deformable

Registration

Difference After
Hybrid Multiscale

Registration

Figure 8. The difference between the fixed and deformed images
before registration, after ordinary deformable registration, and af-
ter hybrid multiscale registration.

such images, the multiscale hybrid registration technique is significantly more ac-
curate than ordinary deformable registration. The improvement of the multiscale
hybrid technique over ordinary deformable registration is much more pronounced in
this case, indicating that the multiscale hybrid registration algorithm is particularly
well-suited for registration problems involving large localized deformations. To vi-
sualize the deformation between the images we illustrate the deformation computed
by the multiscale hybrid registration algorithm applied to a grid image in Figure 9.

Table 5.2 compares the correlation coefficients between the fixed and deformed
images before registration, after hybrid multiscale registration, after multiscale de-
formable registration, and after landmark registration. For reference, the correlation
coefficient before registration is 0.70.

5.3. 3D Registration of respiratory phases. In this section, we demonstrate
that our multiscale hybrid registration technique accurately registers three-dimensional
images. We combine the 80 two-dimensional images from respiratory phases 1 and
8 (shown in Figure 2) to obtain two three-dimensional CT images, as illustrated in
Figure 10.

To register the 3D CT images with one another, we first extend the hierarchical
multiscale decomposition of [25] to 3D images. Although the multiscale decompo-
sition presented in [25] was done in two dimensions only, the hierarchical multiscale
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Figure 9. The original and deformed grid image. The deformed
grid on the right is obtained by applying the deformation computed
by the multiscale hybrid registration algorithm to the grid image
on the left.

Registration
Method

Correlation Coefficient
After Registration

Hybrid multiscale 0.97
Multiscale deformable 0.93
Ordinary deformable 0.90

Landmark 0.84

Table 1. The correlation coefficients between the fixed and de-
formed images after hybrid multiscale registration, after multiscale
deformable registration, and after landmark registration for the
large deformation test case shown in Figure 7.

Figure 10. The 3D CT volumes obtained upon combining the 80
2D CT phase-binned images corresponding to the first (left) and
eighth (right) respiratory phases.

expansion in equation (5) is independent of the image dimensionality. Upon decom-
posing each 3D image we identify corresponding landmarks in each image. For the
purposes of this paper we identify the landmarks slice-by-slice (as in the 2D case)
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and refer the interested reader to [24] for an algorithm to automatically identify
homologous regions in each slice. We then register the 3D coarse scales with one
another using the identified landmarks and apply the resulting transformation to
the original moving image. This coarse-scale landmark-based registration is imple-
mented as a three-dimensional registration. Finally, we use an iterated multiscale
three-dimensional deformable B-splines registration algorithm to complete the reg-
istration process. The advantage of using three-dimensional landmark-based and
deformable registration procedures to register the volumes is that three-dimensional
algorithms allow for transformation in three dimensions (instead of only allowing
deformations restricted to a two-dimensional plane).

Figure 11 compares the intensity difference between two sample slices before
and after multiscale hybrid registration. A comparison of the intensity differences
before and after registration demonstrates that the multiscale hybrid registration
method indeed recovers the difference between the two images. Similar results were
obtained with all other slices. The correlation between the images is 0.8316 before
registration and 0.9745 after registration. Working on a Dell Dimension 8400 Intel
Pentium 4 CPU (3.40 GHz, 2.00 GB of RAM), the total required computation
time for both the 3D multiscale decomposition and multiscale hybrid registration
algorithm is on the order of approximately 20 to 40 minutes, depending on the data
set; this particular example required 29 minutes.

6. Robustness of the multiscale hybrid registration algorithm. In this sec-
tion, we demonstrate the robustness of the multiscale hybrid registration algorithm
with several image registration experiments. All image registration experiments in
this section are performed using the fixed and deformed images shown in Figure 7.
The fixed image in each experiment is the image P1S16 (first respiratory phase, slice
16), and the moving image is the image obtained upon applying a large B-splines
deformation to the fixed image. We shall consider robustness with respect to the
location of the landmarks, number of landmarks, and several types of noise.

6.1. Location of landmarks. In this section, we demonstrate the robustness of
the multiscale hybrid registration technique with respect to the location of the
bony structure landmarks identified using the coarse-scale representations of the
images to be registered. We perform 20 image registration experiments in which
we randomly perturb the position of the coarse-scale landmarks in the fixed image
only by 10 to 20 mm in each trial (the image sizes are all 512 × 512). In each trial,
we place the landmarks in the moving image in exactly the same positions as those
illustrated in Figure 4, but we vary the location of each corresponding landmark in
the fixed image randomly by 10 to 20 mm, as illustrated in Figure 12. The moving
image landmarks are randomly placed in the blue circles shown in Figure 12.

These experiments are designed to determine whether or not the accuracy of the
hybrid algorithm is dependent on precise matching between the landmarks. Table
2 presents the mean square differences (MSDs) and correlation coefficients between
the images after registration. The MSD between two images A and B is defined as
follows:

MSD(A,B) =
1
N

N∑

i=1

(Ai −Bi)2,
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Difference After 
Hybrid Registration

Difference 
Before Registration

Figure 11. The difference between two corresponding slices of the
3D CT images before and after multiscale hybrid registration.

where N is the total number of pixels in each image, Ai is the ith pixel of image
A, and Bi is the ith pixel of image B. Note that the optimum value of the MSD
is 0, indicating exact matching between the images, while poor matches between
the images result in large MSD values. For reference, MSD before registration is
0.1210 and the correlation coefficient before registration is 0.7924. For reference, we
also include the MSD and correlation coefficient after hybrid multiscale registration
with exact correspondence of the landmarks (i.e., no intentional perturbation).

The results presented in Table 2 demonstrate that the multiscale hybrid reg-
istration technique is computationally robust with respect to the location of the
landmarks used in the coarse-scale landmark registration phase of the algorithm.
Although the precise location of the landmarks differs in each of the 20 trials, the
final registration results are essentially the same. This is because the coarse-scale
landmark registration is only the first step in the hybrid registration algorithm; the
multiscale deformable registration step fine tunes the result of the landmark regis-
tration, thus correcting any anomalies introduced in the landmark selection process.
This robustness indicates that the hybrid algorithm is particularly well suited for
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Figure 12. The perturbed locations of the coarse-scale landmarks
in the moving images. In each trial, the landmarks in the moving
image are randomly placed in the blue circles.

clinical applications. Although the algorithm does require the identification of cor-
responding landmarks in the coarse-scale images, the algorithm is not sensitive to
the exact location of the landmarks.

This robustness to the location of the landmarks is one of the most notable
features of our hybrid multiscale landmark and deformable registration algorithm.
Most landmark-based registration algorithms require precise identification of cor-
responding landmarks and are thus tedious, time-consuming, and difficult to im-
plement, even for a medical expert. However, since the accuracy of our hybrid
algorithm is not dependent on precise correspondence of the landmarks in the fixed
and moving images, the identification of the landmarks can be completed quickly
or implemented automatically.

6.2. Number of landmarks. In this section, we consider the effect of the number
of pairs of landmarks used in the landmark-based registration step on the accuracy
and efficiency of the multiscale hybrid registration algorithm. Table 3 presents the
correlation coefficients between the images after registration and total registration
time (including the multiscale decomposition, landmark-based registration of the
coarse scales, and deformable registration) for image registration experiments using
a varying number of landmarks. The locations of the landmarks are illustrated in
Figure 13. The results presented in Table 3 indicate that accurate registration can
be obtained using four pairs of corresponding landmarks.

6.3. Noise. In this section, we demonstrate the robustness of the multiscale hybrid
registration algorithm with respect to the presence of noise in the images to be
registered. Our multiscale registration algorithms [15], [16] were initially developed
in the context of registration of noisy medical images. We consider three types of
noise models: Gaussian, multiplicative, and impulse noise.

6.3.1. Gaussian noise. Gaussian noise is an independent additive noise model in
which the observed (noisy) image f(x) is the sum of the true image s(x) and the
noise n(x):
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Trial Number
MSD After
Registration

Correlation Coefficient
After Registration

Exact Landmark
Correspondence 0.0056 0.9686

1 0.0055 0.9643
2 0.0054 0.9892
3 0.0059 0.9741
4 0.0048 0.9823
5 0.0050 0.9696
6 0.0047 0.9728
7 0.0049 0.9781
8 0.0051 0.9690
9 0.0055 0.9704
10 0.0053 0.9668
11 0.0055 0.9712
12 0.0049 0.9842
13 0.0047 0.9901
14 0.0050 0.9834
15 0.0052 0.9745
16 0.0051 0.9736
17 0.0054 0.9963
18 0.0047 0.9896
19 0.0049 0.9800
20 0.0048 0.9773

Table 2. The MSDs and correlation coefficients between the fixed
and deformed images after multiscale hybrid registration. Each
trial number represents a different perturbation of the landmarks
in the fixed image.

Figure 13. The locations of the landmarks used in the experi-
ments presented in Table 3.
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Number of Pairs
of Landmarks

Correlation Coefficient
After Registration

Total
Computation Time

2 0.9365 99 seconds
3 0.9488 89 seconds
4 0.9686 75 seconds
5 0.9598 77 seconds
6 0.9486 85 seconds
7 0.9565 86 seconds

Table 3. The correlation coefficients between the fixed and de-
formed images after hybrid registration and total computation time
required for hybrid registration for image registration experiments
using a varying number of landmarks.

Figure 14. The fixed and deformed images with Gaussian noise
of mean 0 and variance 0.1.

f(x) = s(x) + n(x), (6)

where n(x) is uniformly distributed random noise with mean µ and variance v.
Figure 14 illustrates the fixed and moving images with added Gaussian noise of
mean 0 and variance 0.1

Table 4 presents the correlation coefficients between the noisy images shown
in Figure 14 before registration, after ordinary deformable registration, and after
hybrid registration.

6.3.2. Multiplicative noise. Multiplicative noise, or speckle noise, is commonly ob-
served in medical imaging. It is defined by the following model, where s(x) denotes
the actual image and f(x) denotes the observed (noisy) image:

f(x) = s(x) + η(0, δ) · s(x), (7)

where η(0, δ) is uniformly distributed random noise of mean 0 and variance δ.
where n(x) is uniformly distributed random noise with mean µ and variance v.
Figure 15 illustrates the fixed and moving images with added multiplicative noise
of mean 0 and variance 0.2
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Gaussian Noise Correlation Coefficient Computation Time
Before registration 0.1830

Deformable registration 0.2057 304 seconds
Multiscale deformable registration 0.8915 92 seconds

After hybrid registration 0.9149 81 seconds

Table 4. The correlation coefficients between the noisy fixed and
moving images shown in Figure 14 before registration, after ordi-
nary deformable registration, and after multiscale hybrid registra-
tion.

Figure 15. The fixed and deformed images with multiplicative
noise of mean 0 and variance 0.2.

Multiplicative Noise Correlation Coefficient Computation Time
Before registration 0.3527

Deformable registration 0.4683 295 seconds
Multiscale deformable registration 0.9011 89 seconds

Hybrid multiscale registration 0.9366 76 seconds

Table 5. The correlation coefficients between the noisy fixed and
moving images shown in Figure 15 before registration, after ordi-
nary deformable registration, and after multiscale hybrid registra-
tion.

Table 5 we presents the correlation coefficients between the noisy images shown
in Figure 15 before registration, after ordinary deformable registration, and after
hybrid registration.

6.3.3. Impulse noise. Impulse noise, or salt and pepper noise, is noise that resembles
salt and pepper granules randomly distributed over the image. Impulse noise is
typically defined by the following model, where s(x) denotes the actual image and
f(x) denotes the observed (noisy) image:
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Figure 16. The fixed and deformed images with impulse noise of
density 0.2.

Impulse Noise Correlation Coefficient Computation Time
Before registration 0.2226

Deformable registration 0.2451 333 seconds
Multiscale deformable registration 0.9042 105 seconds

Hybrid registration 0.9377 82 seconds

Table 6. The correlation coefficients between the noisy fixed and
moving images shown in Figure 16 before registration, after ordi-
nary deformable registration, and after multiscale hybrid registra-
tion.

f(x) =

{
s(x), with probability 1− δ,

η(x), with probability δ,
(8)

where η(x) is an identically distributed, independent random process which sets
corrupted pixels alternatively to zero (black) or one (white); unaffected pixels re-
main unchanged. An arbitrary pixel is affected by noise with probability δ, and not
affected with probability 1 − δ. We refer to δ as the impulse noise density, since
adding impulse noise of density δ to an image f(x) affects approximately δ · size(f)
pixels. Figure 16 illustrates the fixed and moving images with added impulse noise
of density 0.2

Table 6 presents the correlation coefficients between the noisy images shown in
Figure 16 before registration, after ordinary deformable registration, after multi-
scale deformable registration, and after hybrid registration, as well as the total
computation time required for each registration.

6.4. Discussion. The results presented in this section demonstrate the accuracy,
efficiency, and robustness of the hybrid multiscale landmark and deformable reg-
istration technique for registration of medical images in both two and three di-
mensions. In particular, the hybrid technique is shown to be more accurate than
ordinary landmark registration, ordinary deformable registration, and multiscale
deformable registration, especially in the case of registering images that contain
large localized deformations and/or noise. Because the accuracy of the hybrid
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technique is not sensitive to precise identification of the location of correspond-
ing landmarks, the hybrid registration method is a significant improvement over
ordinary landmark-based registration methods, which are known to be dependent
on exact spatial correspondence of landmarks. Additionally, the hybrid technique
accurately registers deformed images that contain noise levels large enough that
ordinary registration techniques fail to produce meaningful results.

The development of our hybrid multiscale technique was motivated by the ob-
servation that the correspondence between some of the regions in the moving image
(such as bony structures) can be easily identified visually, while the correspondence
between other regions (such as those that contain tissue deformation, breathing
movement, or lack of distinct image features) is less obvious. Thus, rather than
approach the mapping of the two types of regions equally, as with ordinary image
registration algorithms, mapping should be approached separately for each region.
Our proposed technique combines landmark registration and deformable registra-
tion so that prior knowledge about the correspondence between the images, such
as visual identification of corresponding landmarks, can be incorporated into the
deformable registration process. The use of the coarse scales (which contain only
the main shapes and general features of the images) obtained via the hierarchical
multiscale image decomposition of [25] enables quick and easy identification of cor-
responding landmarks, and the deformable registration component of the algorithm
fine-tunes the registration result produced by the coarse-scale landmark registration.

7. Conclusions. In this paper, we proposed a novel hybrid two-step image reg-
istration technique combining the hierarchical multiscale image decomposition of
[25] with landmark and deformable registration methods. The hybrid approach has
several major advantages over ordinary registration algorithms. It allows the practi-
tioner to incorporate a priori knowledge of corresponding bony or other anatomical
structures into the registration process using a coarse-scale landmark registration.
Because the coarse scales of an image contain only its main shapes, the coarse-scale
landmark registration phase of the hybrid algorithm is easy to implement and is
computationally efficient. The transformation produced by the coarse-scale land-
mark registration is used as the starting point for a deformable registration, which
significantly decreases the computation time required for convergence of the de-
formable registration algorithm. The hybrid method was applied to both two- and
three-dimensional deformable image registration problems, and our results demon-
strated that the hybrid registration is more accurate that ordinary landmark and
deformable registration methods, and that the technique significantly improves the
accuracy of registration of images that contain large localized deformations. The
hybrid algorithm is very robust with respect to the location of the landmarks used
in the coarse-scale landmark registration phase of the algorithm, indicating that
the accuracy of the technique is not dependent on precise spatial correspondence of
landmarks. Compared to ordinary landmark registration, this method significantly
reduces the time required for the difficult and tedious task of landmark selection.
The hybrid method is also robust with respect to the presence of several different
types of noise, and greatly improves the accuracy of registration of images that
contain noise or other artifacts.

Appendix A. Implementation of the multiscale decomposition. As de-
scribed in [25], the initial scale λ0 should capture the smallest oscillatory scale
in f , given by
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1
2λ0

≤ ||f ||W−1,∞ ≤ 1
λ0

, (9)

where W−1,∞ is the Sobolev space with norm given by:

||f ||W−1,∞ := sup
g

[ ∫
f(x)g(x)
||g||W 1,1

dx

]
,

where ||g||W 1,1 := ||∇g||L1 . However, in practice we may not be able to determine
the size of ||f ||W−1,∞ , so we determine the initial choice of λ0 experimentally. Fol-
lowing [25], for the applications presented in this paper, we will use λ0 = 0.01 and
λj = λ02j .

We follow the numerical algorithm of [25] for the construction of our hierarchical
decomposition. In each step we use finite-difference discretization of the Euler-
Lagrange equations associated with the J(vj , λj+1) to obtain the next term, uj+1,
in the decomposition of the image f . Due to the singularity when |∇uλ| = 0, we
replace J(f, λ) by the regularized functional

Jε(f, λ) := inf
u+v=f

{
λ||v||2L2 +

∫

Ω

√
ε2 + |∇u|2 dx dy

}
, (10)

and at each step, we find the minimizer uλ of Jε. The Euler-Lagrange equation for
Jε(f, λ) is

uλ − 1
2λ

div

(
∇uλ√

ε2 + |∇uλ|2

)
= f in Ω ,

with the Neumann boundary conditions:

∂uλ

∂n

∣∣∣∣
∂Ω

= 0, (11)

where ∂Ω is the boundary of the domain Ω and n is the unit outward normal. We

thus obtain an expansion f ∼
k∑

j=0

uj , where the uj are constructed as approximate

solutions of the recursive relation given by the following elliptic PDE:

uj+1 − 1
2λj+1

div

(
∇uj+1√

ε2 + |∇uj+1|2

)
= − 1

2λj
div

(
∇uj√

ε2 + |∇uj |2

)
. (12)

To numerically implement the method, we cover the domain Ω with a grid (xi :=
ih, yj := jh), and discretize the elliptic PDE of Eq. (12) as follows:.

ui,j = fi,j+

1
2h2

[
ui+1,j − ui,j√

ε2 + (D+xui,j)2 + (D0yui,j)2
− ui,j − ui−1,j√

ε2 + (D−xui,j)2 + (D0yui−1,j)2

]
+

1
2h2

[
ui,j+1 − ui,j√

ε2 + (D0xui,j)2 + (D+yui,j)2
− ui,j − ui,j−1√

ε2 + (D0xui,j−1)2 + (D−yui,j)2

]
,

(13)
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where D+, D−, and D0 denote the forward, backward, and centered divided dif-
ferences, respectively. To solve the discrete regularized Euler-Lagrange equations
(13), we use the Gauss-Siedel iterative method to obtain:

un+1
i,j = fi,j+

1
2h2


 un

i+1,j − un+1
i,j√

ε2 + (D+xun
i,j)2 + (D0yun

i,j)2
− un+1

i,j − un
i−1,j√

ε2 + (D−xun
i,j)2 + (D0yun

i−1,j)2


 +

1
2h2


 un

i,j+1 − un+1
i,j√

ε2 + (D0xun
i,j)2 + (D+yun

i,j)2
− un+1

i,j − un
i,j−1√

ε2 + (D0xun
i,j−1)2 + (D−yun

i,j)2


 .

(14)

To satisfy the Neumann boundary conditions (11), we first reflect f outside Ω by
adding grid lines on all sides of Ω. As the initial condition, we set u0

i,j = fi,j . We
iterate this numerical scheme for n = 0, 1, . . . N until ||un∞ − un∞−1|| is less than
some preassigned value so that un∞

i,j is an accurate approximation of the fixed point
steady solution uλ.

Finally, we denote the final solution uλ := {un∞
i,j }i,j . To obtain the hierarchical

multiscale decomposition, we reiterate this process, each time updating f and λ in
the following way:

fnew ← fcurrent − uλ,
λnew ← 2λcurrent.

(15)

That is, at each step, we apply the J(fcurrent−uλ, 2λ) minimization to the residual
fcurrent − uλ of the previous step. Taking λj = λ02j , we obtain after k steps a
hierarchical multiscale decomposition f = uλ0 + uλ1 + . . . + uλk

+ vλk
, where we

write uλj = uj . We call the uj , j = 1, 2, . . . , k the components of f , and the vk the
residuals. For ease of notation, given an image f , we let Ck(f) denote the kth scale
of the image f , k = 1, . . . , m:

Ck(f) =
k−1∑

i=0

uk(f). (16)

Thus Ck(A) will denote the kth scale of the image A, and Ck(B) will denote the
kth scale of image B.

A.1. Three-dimensional implementation. To implement the iterated multi-
scale decomposition in three dimensions, we cover the image domain Ω with a
grid (xi := ih, yj := jh, zk := kh), and let D+, D−, and D0 denote the forward,
backward, and centered divided differences, respectively. Then the 3D extension of
the iterated multiscale decomposition given by equation (14) in Section A is:
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un+1
i,j,k = fi,k,j (17)

+
1

2h2


 un

i+1,j,k − un+1
i,j,k√

ε2 + (D+xun
i,j,k)2 + (D0yun

i,j,k)2 + (D0zun
i,j,k)2




− 1
2h2


 un+1

i,j,k − un
i−1,j,k√

ε2 + (D−xun
i,j,k)2 + (D0yun

i−1,j,k)2 + (D0zun
i−1,j,k)2




+
1

2h2


 un

i,j+1,k − un+1
i,j,k√

ε2 + (D0xun
i,j,k)2 + (D+yun

i,j,k)2 + (D0zun
i,j,k)2




− 1
2h2


 un+1

i,j,k − un
i,j−1,k√

ε2 + (D0xun
i,j−1,k)2 + (D−yun

i,j,k)2 + (D0zun
i,j−1,k)2




+
1

2h2


 un

i,j,k+1 − un+1
i,j,k√

ε2 + (D0xun
i,j,k)2 + (D0yun

i,j,k)2 + (D+zun
i,j,k)2




− 1
2h2


 un+1

i,j,k − un
i,j,k−1√

ε2 + (D0xun
i,j,k−1)2 + (D0yun

i,j,k−1)2 + (D−zun
i,j,k)2


 .
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